The generator matrix 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 X 1 1 1 1 0 1 1 X 1 1 X 1 2X 1 1 1 1 X 1 1 1 1 1 1 1 1 1 1 1 1 1 X 1 1 1 0 2X 2X 2X 1 1 X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 2 0 2X+1 2 1 0 2X+1 2 1 X+2 X 2X+1 1 0 X+1 X 2 1 2X+1 X+2 1 X X+2 1 X+1 1 X X+2 2X 2X+2 1 2X+1 X+1 X+1 2X+1 X+1 1 X+1 0 X X 0 X 2X+2 1 2 2X+2 2X+2 1 1 1 1 2X+1 2X 1 1 X+2 X+2 X+2 X+1 2X+2 1 2X+1 X+1 1 2X+1 X+1 1 2 2X+2 X+2 X+2 2 2 2 1 0 1 2X 2X+2 1 2X+1 0 0 2X 0 X 2X X 0 2X X 0 2X 2X X 0 X 0 X 2X X X 0 2X 2X 2X X 2X 0 0 X 0 0 2X X 2X X 0 2X 0 2X X X X 0 2X 0 X 0 0 2X 0 2X X 0 X X 2X 2X 0 2X X 0 2X 0 X 0 2X X X 2X 0 X X X 0 2X 2X 2X 2X X 2X 2X X X X 0 0 0 X X 2X 2X X 0 0 2X 0 2X 0 2X 0 X 2X X X X 0 X X 2X 0 2X X 2X 2X 0 2X 0 2X X X 2X 0 0 X 0 2X X 2X 2X X 0 0 0 2X 2X X X X 0 X X 0 X 0 2X X 0 0 0 X 2X X 2X X 0 0 2X X 2X 0 X 2X 2X 0 2X 0 X 2X 2X generates a code of length 85 over Z3[X]/(X^2) who´s minimum homogenous weight is 166. Homogenous weight enumerator: w(x)=1x^0+168x^166+114x^168+138x^169+94x^171+54x^172+18x^174+102x^175+8x^177+24x^178+4x^180+4x^204 The gray image is a linear code over GF(3) with n=255, k=6 and d=166. This code was found by Heurico 1.16 in 78.2 seconds.